We have indeterminateness of type
oo/oo,
i.e. limit for the numerator is
$$\lim_{n \to \infty} \log{\left(n! \right)} = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} \log{\left(n^{n} \right)} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{\log{\left(n! \right)}}{\log{\left(n^{n} \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \log{\left(n! \right)}}{\frac{d}{d n} \log{\left(n^{n} \right)}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{\left(\log{\left(n \right)} + 1\right) n!}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)}}{n!}}{\frac{d}{d n} \left(\log{\left(n \right)} + 1\right)}\right)$$
=
$$\lim_{n \to \infty}\left(n \left(\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n!} + \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n!^{2}}\right)\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} n}{\frac{d}{d n} \frac{1}{\frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n!} + \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!} - \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)}}{n!^{2}}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{2}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{2}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}}{n!^{2}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{3}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{3}} + \frac{\Gamma^{4}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{4}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{n!} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!^{2}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{2}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!^{3}}}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{2}} + \frac{2 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{2}} + \frac{\Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(1,n + 1 \right)}}{n!^{2}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{3}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{2}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{3}} + \frac{\Gamma^{4}\left(n + 1\right) \operatorname{polygamma}^{4}{\left(0,n + 1 \right)}}{n!^{4}}}{- \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!} - \frac{3 \Gamma\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!} - \frac{\Gamma\left(n + 1\right) \operatorname{polygamma}{\left(2,n + 1 \right)}}{n!} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!^{2}} + \frac{3 \Gamma^{2}\left(n + 1\right) \operatorname{polygamma}{\left(0,n + 1 \right)} \operatorname{polygamma}{\left(1,n + 1 \right)}}{n!^{2}} - \frac{2 \Gamma^{3}\left(n + 1\right) \operatorname{polygamma}^{3}{\left(0,n + 1 \right)}}{n!^{3}}}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)