Mister Exam

Other calculators:


x*e^x

Limit of the function x*e^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   x\
 lim  \x*E /
x->-oo      
$$\lim_{x \to -\infty}\left(e^{x} x\right)$$
Limit(x*E^x, x, -oo)
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to -\infty} x = -\infty$$
and limit for the denominator is
$$\lim_{x \to -\infty} e^{- x} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to -\infty}\left(e^{x} x\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to -\infty}\left(x e^{x}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{- x}}\right)$$
=
$$\lim_{x \to -\infty}\left(- e^{x}\right)$$
=
$$\lim_{x \to -\infty}\left(- e^{x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(e^{x} x\right) = 0$$
$$\lim_{x \to \infty}\left(e^{x} x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(e^{x} x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{x} x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{x} x\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{x} x\right) = e$$
More at x→1 from the right
Rapid solution [src]
0
$$0$$
The graph
Limit of the function x*e^x