Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of log(factorial(n))
Limit of log(log(x))
Limit of sqrt(x)*log(x)
Limit of sin(z)
Identical expressions
log(factorial(n))
logarithm of (factorial(n))
logfactorialn
Limit of the function
/
log(factorial(n))
Limit of the function log(factorial(n))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim log(n!) n->oo
$$\lim_{n \to \infty} \log{\left(n! \right)}$$
Limit(log(factorial(n)), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \log{\left(n! \right)} = \infty$$
$$\lim_{n \to 0^-} \log{\left(n! \right)} = 0$$
More at n→0 from the left
$$\lim_{n \to 0^+} \log{\left(n! \right)} = 0$$
More at n→0 from the right
$$\lim_{n \to 1^-} \log{\left(n! \right)} = 0$$
More at n→1 from the left
$$\lim_{n \to 1^+} \log{\left(n! \right)} = 0$$
More at n→1 from the right
$$\lim_{n \to -\infty} \log{\left(n! \right)} = \log{\left(\left(-\infty\right)! \right)}$$
More at n→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify