Mister Exam

Other calculators:


tanh(x)

Limit of the function tanh(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim tanh(x)
x->oo       
limxtanh(x)\lim_{x \to \infty} \tanh{\left(x \right)}
Limit(tanh(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
1
11
Other limits x→0, -oo, +oo, 1
limxtanh(x)=1\lim_{x \to \infty} \tanh{\left(x \right)} = 1
limx0tanh(x)=0\lim_{x \to 0^-} \tanh{\left(x \right)} = 0
More at x→0 from the left
limx0+tanh(x)=0\lim_{x \to 0^+} \tanh{\left(x \right)} = 0
More at x→0 from the right
limx1tanh(x)=tanh(1)\lim_{x \to 1^-} \tanh{\left(x \right)} = \tanh{\left(1 \right)}
More at x→1 from the left
limx1+tanh(x)=tanh(1)\lim_{x \to 1^+} \tanh{\left(x \right)} = \tanh{\left(1 \right)}
More at x→1 from the right
limxtanh(x)=1\lim_{x \to -\infty} \tanh{\left(x \right)} = -1
More at x→-oo
The graph
Limit of the function tanh(x)