$$\lim_{x \to \frac{\pi}{2}^-}\left(i n \sin{\left(x \right)}\right) = i n$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(i n \sin{\left(x \right)}\right) = i n$$
$$\lim_{x \to \infty}\left(i n \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle i n$$
More at x→oo$$\lim_{x \to 0^-}\left(i n \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(i n \sin{\left(x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(i n \sin{\left(x \right)}\right) = i n \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(i n \sin{\left(x \right)}\right) = i n \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(i n \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle i n$$
More at x→-oo