Mister Exam

Limit of the function i*n*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (I*n*sin(x))
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(i n \sin{\left(x \right)}\right)$$
Limit((i*n)*sin(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
One‐sided limits [src]
 lim  (I*n*sin(x))
   pi             
x->--+            
   2              
$$\lim_{x \to \frac{\pi}{2}^+}\left(i n \sin{\left(x \right)}\right)$$
I*n
$$i n$$
 lim  (I*n*sin(x))
   pi             
x->---            
   2              
$$\lim_{x \to \frac{\pi}{2}^-}\left(i n \sin{\left(x \right)}\right)$$
I*n
$$i n$$
i*n
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(i n \sin{\left(x \right)}\right) = i n$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(i n \sin{\left(x \right)}\right) = i n$$
$$\lim_{x \to \infty}\left(i n \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle i n$$
More at x→oo
$$\lim_{x \to 0^-}\left(i n \sin{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(i n \sin{\left(x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(i n \sin{\left(x \right)}\right) = i n \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(i n \sin{\left(x \right)}\right) = i n \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(i n \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle i n$$
More at x→-oo
Rapid solution [src]
I*n
$$i n$$