Mister Exam

Other calculators:


tanh(1/x)

Limit of the function tanh(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /1\
 lim tanh|-|
x->oo    \x/
limxtanh(1x)\lim_{x \to \infty} \tanh{\left(\frac{1}{x} \right)}
Limit(tanh(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limxtanh(1x)=0\lim_{x \to \infty} \tanh{\left(\frac{1}{x} \right)} = 0
limx0tanh(1x)=1\lim_{x \to 0^-} \tanh{\left(\frac{1}{x} \right)} = -1
More at x→0 from the left
limx0+tanh(1x)=1\lim_{x \to 0^+} \tanh{\left(\frac{1}{x} \right)} = 1
More at x→0 from the right
limx1tanh(1x)=1+e21+e2\lim_{x \to 1^-} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}
More at x→1 from the left
limx1+tanh(1x)=1+e21+e2\lim_{x \to 1^+} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}
More at x→1 from the right
limxtanh(1x)=0\lim_{x \to -\infty} \tanh{\left(\frac{1}{x} \right)} = 0
More at x→-oo
The graph
Limit of the function tanh(1/x)