$$\lim_{x \to \infty} \tanh{\left(\frac{1}{x} \right)} = 0$$ $$\lim_{x \to 0^-} \tanh{\left(\frac{1}{x} \right)} = -1$$ More at x→0 from the left $$\lim_{x \to 0^+} \tanh{\left(\frac{1}{x} \right)} = 1$$ More at x→0 from the right $$\lim_{x \to 1^-} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}$$ More at x→1 from the right $$\lim_{x \to -\infty} \tanh{\left(\frac{1}{x} \right)} = 0$$ More at x→-oo