Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of tanh(1/x)
Limit of cos(x)*log(x)
Limit of sec(x)
Limit of 3+3*n^2+5*n-32*n^3/5
Identical expressions
tanh(one /x)
hyperbolic tangent of gent of (1 divide by x)
hyperbolic tangent of gent of (one divide by x)
tanh1/x
tanh(1 divide by x)
Limit of the function
/
tanh(1/x)
Limit of the function tanh(1/x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/1\ lim tanh|-| x->oo \x/
lim
x
→
∞
tanh
(
1
x
)
\lim_{x \to \infty} \tanh{\left(\frac{1}{x} \right)}
x
→
∞
lim
tanh
(
x
1
)
Limit(tanh(1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
2
-2
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
tanh
(
1
x
)
=
0
\lim_{x \to \infty} \tanh{\left(\frac{1}{x} \right)} = 0
x
→
∞
lim
tanh
(
x
1
)
=
0
lim
x
→
0
−
tanh
(
1
x
)
=
−
1
\lim_{x \to 0^-} \tanh{\left(\frac{1}{x} \right)} = -1
x
→
0
−
lim
tanh
(
x
1
)
=
−
1
More at x→0 from the left
lim
x
→
0
+
tanh
(
1
x
)
=
1
\lim_{x \to 0^+} \tanh{\left(\frac{1}{x} \right)} = 1
x
→
0
+
lim
tanh
(
x
1
)
=
1
More at x→0 from the right
lim
x
→
1
−
tanh
(
1
x
)
=
−
1
+
e
2
1
+
e
2
\lim_{x \to 1^-} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}
x
→
1
−
lim
tanh
(
x
1
)
=
1
+
e
2
−
1
+
e
2
More at x→1 from the left
lim
x
→
1
+
tanh
(
1
x
)
=
−
1
+
e
2
1
+
e
2
\lim_{x \to 1^+} \tanh{\left(\frac{1}{x} \right)} = \frac{-1 + e^{2}}{1 + e^{2}}
x
→
1
+
lim
tanh
(
x
1
)
=
1
+
e
2
−
1
+
e
2
More at x→1 from the right
lim
x
→
−
∞
tanh
(
1
x
)
=
0
\lim_{x \to -\infty} \tanh{\left(\frac{1}{x} \right)} = 0
x
→
−
∞
lim
tanh
(
x
1
)
=
0
More at x→-oo
The graph