Mister Exam

Other calculators:


cos(x)*log(x)

Limit of the function cos(x)*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (cos(x)*log(x))
x->0+               
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)$$
Limit(cos(x)*log(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (cos(x)*log(x))
x->0+               
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)$$
-oo
$$-\infty$$
= -8.85888306270682
 lim (cos(x)*log(x))
x->0-               
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)$$
-oo
$$-\infty$$
= (-8.8553295008311 + 3.13695664871034j)
= (-8.8553295008311 + 3.13695664871034j)
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = -\infty$$
$$\lim_{x \to \infty}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
-8.85888306270682
-8.85888306270682
The graph
Limit of the function cos(x)*log(x)