Mister Exam

Other calculators:


cos(x)*log(x)

Limit of the function cos(x)*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (cos(x)*log(x))
x->0+               
limx0+(log(x)cos(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)
Limit(cos(x)*log(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1010
One‐sided limits [src]
 lim (cos(x)*log(x))
x->0+               
limx0+(log(x)cos(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)
-oo
-\infty
= -8.85888306270682
 lim (cos(x)*log(x))
x->0-               
limx0(log(x)cos(x))\lim_{x \to 0^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right)
-oo
-\infty
= (-8.8553295008311 + 3.13695664871034j)
= (-8.8553295008311 + 3.13695664871034j)
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx0(log(x)cos(x))=\lim_{x \to 0^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = -\infty
More at x→0 from the left
limx0+(log(x)cos(x))=\lim_{x \to 0^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = -\infty
limx(log(x)cos(x))=,\lim_{x \to \infty}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx1(log(x)cos(x))=0\lim_{x \to 1^-}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = 0
More at x→1 from the left
limx1+(log(x)cos(x))=0\lim_{x \to 1^+}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = 0
More at x→1 from the right
limx(log(x)cos(x))=,\lim_{x \to -\infty}\left(\log{\left(x \right)} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→-oo
Numerical answer [src]
-8.85888306270682
-8.85888306270682
The graph
Limit of the function cos(x)*log(x)