Mister Exam

Other calculators:


sec(x)

Limit of the function sec(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sec(x)
x->oo      
$$\lim_{x \to \infty} \sec{\left(x \right)}$$
Limit(sec(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to 0^-} \sec{\left(x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sec{\left(x \right)} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sec{\left(x \right)} = \sec{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sec{\left(x \right)} = \sec{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
The graph
Limit of the function sec(x)