Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of cos(x)*log(x)
Limit of sec(x)
Limit of 3+3*n^2+5*n-32*n^3/5
Limit of (x^n-y^n)/(x-y)
Integral of d{x}
:
sec(x)
Derivative of
:
sec(x)
Graphing y =
:
sec(x)
Identical expressions
sec(x)
secx
Limit of the function
/
sec(x)
Limit of the function sec(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim sec(x) x->oo
lim
x
→
∞
sec
(
x
)
\lim_{x \to \infty} \sec{\left(x \right)}
x
→
∞
lim
sec
(
x
)
Limit(sec(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-50
50
Plot the graph
Rapid solution
[src]
<-oo, oo>
⟨
−
∞
,
∞
⟩
\left\langle -\infty, \infty\right\rangle
⟨
−
∞
,
∞
⟩
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
sec
(
x
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to \infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
x
→
∞
lim
sec
(
x
)
=
⟨
−
∞
,
∞
⟩
lim
x
→
0
−
sec
(
x
)
=
1
\lim_{x \to 0^-} \sec{\left(x \right)} = 1
x
→
0
−
lim
sec
(
x
)
=
1
More at x→0 from the left
lim
x
→
0
+
sec
(
x
)
=
1
\lim_{x \to 0^+} \sec{\left(x \right)} = 1
x
→
0
+
lim
sec
(
x
)
=
1
More at x→0 from the right
lim
x
→
1
−
sec
(
x
)
=
sec
(
1
)
\lim_{x \to 1^-} \sec{\left(x \right)} = \sec{\left(1 \right)}
x
→
1
−
lim
sec
(
x
)
=
sec
(
1
)
More at x→1 from the left
lim
x
→
1
+
sec
(
x
)
=
sec
(
1
)
\lim_{x \to 1^+} \sec{\left(x \right)} = \sec{\left(1 \right)}
x
→
1
+
lim
sec
(
x
)
=
sec
(
1
)
More at x→1 from the right
lim
x
→
−
∞
sec
(
x
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to -\infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
x
→
−
∞
lim
sec
(
x
)
=
⟨
−
∞
,
∞
⟩
More at x→-oo
The graph