Mister Exam

Limit of the function sec(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim sec(x)
x->oo      
limxsec(x)\lim_{x \to \infty} \sec{\left(x \right)}
Limit(sec(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
<-oo, oo>
,\left\langle -\infty, \infty\right\rangle
Other limits x→0, -oo, +oo, 1
limxsec(x)=,\lim_{x \to \infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
limx0sec(x)=1\lim_{x \to 0^-} \sec{\left(x \right)} = 1
More at x→0 from the left
limx0+sec(x)=1\lim_{x \to 0^+} \sec{\left(x \right)} = 1
More at x→0 from the right
limx1sec(x)=sec(1)\lim_{x \to 1^-} \sec{\left(x \right)} = \sec{\left(1 \right)}
More at x→1 from the left
limx1+sec(x)=sec(1)\lim_{x \to 1^+} \sec{\left(x \right)} = \sec{\left(1 \right)}
More at x→1 from the right
limxsec(x)=,\lim_{x \to -\infty} \sec{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→-oo
The graph
Limit of the function sec(x)