Mister Exam

Other calculators:


4*x^3

Limit of the function 4*x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   3\
 lim  \4*x /
x->-oo      
$$\lim_{x \to -\infty}\left(4 x^{3}\right)$$
Limit(4*x^3, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(4 x^{3}\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to -\infty}\left(4 x^{3}\right)$$ =
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{4} \frac{1}{x^{3}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{4} \frac{1}{x^{3}}} = \lim_{u \to 0^+}\left(\frac{4}{u^{3}}\right)$$
=
$$\frac{4}{0} = -\infty$$

The final answer:
$$\lim_{x \to -\infty}\left(4 x^{3}\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(4 x^{3}\right) = -\infty$$
$$\lim_{x \to \infty}\left(4 x^{3}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(4 x^{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 x^{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(4 x^{3}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 x^{3}\right) = 4$$
More at x→1 from the right
The graph
Limit of the function 4*x^3