Mister Exam

Limit of the function 4/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /4\
 lim  |-|
x->-2+\x/
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right)$$
Limit(4/x, x, -2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-2
$$-2$$
One‐sided limits [src]
      /4\
 lim  |-|
x->-2+\x/
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right)$$
-2
$$-2$$
= -2
      /4\
 lim  |-|
x->-2-\x/
$$\lim_{x \to -2^-}\left(\frac{4}{x}\right)$$
-2
$$-2$$
= -2
= -2
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -2^-}\left(\frac{4}{x}\right) = -2$$
More at x→-2 from the left
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right) = -2$$
$$\lim_{x \to \infty}\left(\frac{4}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{4}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{4}{x}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4}{x}\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
-2.0
-2.0
The graph
Limit of the function 4/x