Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (3+x^2-x)/(-3+3*x+5*x^2)
Limit of (-1+x^2)/(-2+x+x^2)
Limit of (sqrt(5+x)-sqrt(10))/(-15+x^2-2*x)
Integral of d{x}
:
4/x
Derivative of
:
4/x
Graphing y =
:
4/x
Identical expressions
four /x
4 divide by x
four divide by x
Similar expressions
(1+2*x+3*x^4)/(x^4-x^3+2*x)
(1-x^3+5*x^4)/(x+2*x^4)
Limit of the function
/
4/x
Limit of the function 4/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/4\ lim |-| x->-2+\x/
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right)$$
Limit(4/x, x, -2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-2
$$-2$$
Expand and simplify
One‐sided limits
[src]
/4\ lim |-| x->-2+\x/
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right)$$
-2
$$-2$$
= -2
/4\ lim |-| x->-2-\x/
$$\lim_{x \to -2^-}\left(\frac{4}{x}\right)$$
-2
$$-2$$
= -2
= -2
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -2^-}\left(\frac{4}{x}\right) = -2$$
More at x→-2 from the left
$$\lim_{x \to -2^+}\left(\frac{4}{x}\right) = -2$$
$$\lim_{x \to \infty}\left(\frac{4}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{4}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{4}{x}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4}{x}\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4}{x}\right) = 0$$
More at x→-oo
Numerical answer
[src]
-2.0
-2.0
The graph