Mister Exam

Other calculators:


5*x

Limit of the function 5*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (5*x)
x->0+     
limx0+(5x)\lim_{x \to 0^+}\left(5 x\right)
Limit(5*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-100100
One‐sided limits [src]
 lim (5*x)
x->0+     
limx0+(5x)\lim_{x \to 0^+}\left(5 x\right)
0
00
= 4.27819628868095e-32
 lim (5*x)
x->0-     
limx0(5x)\lim_{x \to 0^-}\left(5 x\right)
0
00
= -4.27819628868095e-32
= -4.27819628868095e-32
Other limits x→0, -oo, +oo, 1
limx0(5x)=0\lim_{x \to 0^-}\left(5 x\right) = 0
More at x→0 from the left
limx0+(5x)=0\lim_{x \to 0^+}\left(5 x\right) = 0
limx(5x)=\lim_{x \to \infty}\left(5 x\right) = \infty
More at x→oo
limx1(5x)=5\lim_{x \to 1^-}\left(5 x\right) = 5
More at x→1 from the left
limx1+(5x)=5\lim_{x \to 1^+}\left(5 x\right) = 5
More at x→1 from the right
limx(5x)=\lim_{x \to -\infty}\left(5 x\right) = -\infty
More at x→-oo
Rapid solution [src]
0
00
Numerical answer [src]
4.27819628868095e-32
4.27819628868095e-32
The graph
Limit of the function 5*x