Mister Exam

Integral of 5*x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1       
  /       
 |        
 |  5*x dx
 |        
/         
0         
015xdx\int\limits_{0}^{1} 5 x\, dx
Integral(5*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: 5x22\frac{5 x^{2}}{2}

  2. Add the constant of integration:

    5x22+constant\frac{5 x^{2}}{2}+ \mathrm{constant}


The answer is:

5x22+constant\frac{5 x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                2
 |              5*x 
 | 5*x dx = C + ----
 |               2  
/                   
5xdx=C+5x22\int 5 x\, dx = C + \frac{5 x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
5/2
52\frac{5}{2}
=
=
5/2
52\frac{5}{2}
5/2
Numerical answer [src]
2.5
2.5
The graph
Integral of 5*x dx

    Use the examples entering the upper and lower limits of integration.