Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (3+x^2-x)/(-3+3*x+5*x^2)
Limit of (-1+x^2)/(-2+x+x^2)
Limit of (sqrt(5+x)-sqrt(10))/(-15+x^2-2*x)
Identical expressions
factorial(x)/x
factorial(x) divide by x
factorialx/x
Similar expressions
log(factorial(x))/x
log(x)*log(factorial(x))/x
log(factorial(x))/x^2
-3+sin(factorial(x))/x
1+sin(factorial(x))/x^(1/3)
Limit of the function
/
factorial(x)/x
Limit of the function factorial(x)/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x!\ lim |--| x->oo\x /
$$\lim_{x \to \infty}\left(\frac{x!}{x}\right)$$
Limit(factorial(x)/x, x, oo, dir='-')
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x!}{x}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x!}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x!}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x!}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x!}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x!}{x}\right) = 0$$
More at x→-oo