Mister Exam

Other calculators:


exp(1/x)/x^2

Limit of the function exp(1/x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 1\
     | -|
     | x|
     |e |
 lim |--|
x->0+| 2|
     \x /
limx0+(e1xx2)\lim_{x \to 0^+}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right)
Limit(exp(1/x)/x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-20000002000000
Other limits x→0, -oo, +oo, 1
limx0(e1xx2)=\lim_{x \to 0^-}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(e1xx2)=\lim_{x \to 0^+}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = \infty
limx(e1xx2)=0\lim_{x \to \infty}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = 0
More at x→oo
limx1(e1xx2)=e\lim_{x \to 1^-}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = e
More at x→1 from the left
limx1+(e1xx2)=e\lim_{x \to 1^+}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = e
More at x→1 from the right
limx(e1xx2)=0\lim_{x \to -\infty}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right) = 0
More at x→-oo
Rapid solution [src]
oo
\infty
One‐sided limits [src]
     / 1\
     | -|
     | x|
     |e |
 lim |--|
x->0+| 2|
     \x /
limx0+(e1xx2)\lim_{x \to 0^+}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right)
oo
\infty
= -2.12940793228068e-71
     / 1\
     | -|
     | x|
     |e |
 lim |--|
x->0-| 2|
     \x /
limx0(e1xx2)\lim_{x \to 0^-}\left(\frac{e^{\frac{1}{x}}}{x^{2}}\right)
0
00
= 1.77320040811078e-76
= 1.77320040811078e-76
Numerical answer [src]
-2.12940793228068e-71
-2.12940793228068e-71
The graph
Limit of the function exp(1/x)/x^2