Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+n)*(3+n)/(n*(2+n))
Limit of (1+n)/(2+n)
Limit of (1-7/x)^x
Limit of ((-2+x)/(1+x))^(-3+2*x)
Integral of d{x}
:
exp(-x/2)
Identical expressions
exp(-x/ two)
exponent of ( minus x divide by 2)
exponent of ( minus x divide by two)
exp-x/2
exp(-x divide by 2)
Similar expressions
exp(x/2)
x^8*exp(-x)/2
Limit of the function
/
exp(-x/2)
Limit of the function exp(-x/2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-x --- 2 lim e x->oo
lim
x
→
∞
e
(
−
1
)
x
2
\lim_{x \to \infty} e^{\frac{\left(-1\right) x}{2}}
x
→
∞
lim
e
2
(
−
1
)
x
Limit(exp((-x)/2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
200
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
e
(
−
1
)
x
2
=
0
\lim_{x \to \infty} e^{\frac{\left(-1\right) x}{2}} = 0
x
→
∞
lim
e
2
(
−
1
)
x
=
0
lim
x
→
0
−
e
(
−
1
)
x
2
=
1
\lim_{x \to 0^-} e^{\frac{\left(-1\right) x}{2}} = 1
x
→
0
−
lim
e
2
(
−
1
)
x
=
1
More at x→0 from the left
lim
x
→
0
+
e
(
−
1
)
x
2
=
1
\lim_{x \to 0^+} e^{\frac{\left(-1\right) x}{2}} = 1
x
→
0
+
lim
e
2
(
−
1
)
x
=
1
More at x→0 from the right
lim
x
→
1
−
e
(
−
1
)
x
2
=
e
−
1
2
\lim_{x \to 1^-} e^{\frac{\left(-1\right) x}{2}} = e^{- \frac{1}{2}}
x
→
1
−
lim
e
2
(
−
1
)
x
=
e
−
2
1
More at x→1 from the left
lim
x
→
1
+
e
(
−
1
)
x
2
=
e
−
1
2
\lim_{x \to 1^+} e^{\frac{\left(-1\right) x}{2}} = e^{- \frac{1}{2}}
x
→
1
+
lim
e
2
(
−
1
)
x
=
e
−
2
1
More at x→1 from the right
lim
x
→
−
∞
e
(
−
1
)
x
2
=
∞
\lim_{x \to -\infty} e^{\frac{\left(-1\right) x}{2}} = \infty
x
→
−
∞
lim
e
2
(
−
1
)
x
=
∞
More at x→-oo
The graph