Mister Exam

Other calculators:


exp(-x/2)

Limit of the function exp(-x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -x 
      ---
       2 
 lim e   
x->oo    
limxe(1)x2\lim_{x \to \infty} e^{\frac{\left(-1\right) x}{2}}
Limit(exp((-x)/2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100200
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limxe(1)x2=0\lim_{x \to \infty} e^{\frac{\left(-1\right) x}{2}} = 0
limx0e(1)x2=1\lim_{x \to 0^-} e^{\frac{\left(-1\right) x}{2}} = 1
More at x→0 from the left
limx0+e(1)x2=1\lim_{x \to 0^+} e^{\frac{\left(-1\right) x}{2}} = 1
More at x→0 from the right
limx1e(1)x2=e12\lim_{x \to 1^-} e^{\frac{\left(-1\right) x}{2}} = e^{- \frac{1}{2}}
More at x→1 from the left
limx1+e(1)x2=e12\lim_{x \to 1^+} e^{\frac{\left(-1\right) x}{2}} = e^{- \frac{1}{2}}
More at x→1 from the right
limxe(1)x2=\lim_{x \to -\infty} e^{\frac{\left(-1\right) x}{2}} = \infty
More at x→-oo
The graph
Limit of the function exp(-x/2)