Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-3+sqrt(1+4*x))/(-2+x)
Limit of 1/(-8+x)
Limit of (1/x)^(log(1+x)/log(2-x))
Limit of (1-cos(6*x))/(1-cos(8*x))
Graphing y =
:
exp(-1/x)
Identical expressions
exp(- one /x)
exponent of ( minus 1 divide by x)
exponent of ( minus one divide by x)
exp-1/x
exp(-1 divide by x)
Similar expressions
exp(-1/x^2)/x
exp(1/x)
exp(-1/x^2)/x^2
Limit of the function
/
exp(-1/x)
Limit of the function exp(-1/x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
-1 --- x lim e x->oo
$$\lim_{x \to \infty} e^{- \frac{1}{x}}$$
Limit(exp(-1/x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
1
$$1$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{- \frac{1}{x}} = 1$$
$$\lim_{x \to 0^-} e^{- \frac{1}{x}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{- \frac{1}{x}} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{- \frac{1}{x}} = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{- \frac{1}{x}} = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{- \frac{1}{x}} = 1$$
More at x→-oo
The graph