Mister Exam

Other calculators:


exp(1/x)

Limit of the function exp(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1
      1*-
        x
 lim e   
x->0+    
$$\lim_{x \to 0^+} e^{1 \cdot \frac{1}{x}}$$
Limit(exp(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
        1
      1*-
        x
 lim e   
x->0+    
$$\lim_{x \to 0^+} e^{1 \cdot \frac{1}{x}}$$
oo
$$\infty$$
= -3.6866953016766e-75
        1
      1*-
        x
 lim e   
x->0-    
$$\lim_{x \to 0^-} e^{1 \cdot \frac{1}{x}}$$
0
$$0$$
= -1.43738767003715e-78
= -1.43738767003715e-78
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} e^{1 \cdot \frac{1}{x}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{1 \cdot \frac{1}{x}} = \infty$$
$$\lim_{x \to \infty} e^{1 \cdot \frac{1}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} e^{1 \cdot \frac{1}{x}} = e$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{1 \cdot \frac{1}{x}} = e$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{1 \cdot \frac{1}{x}} = 1$$
More at x→-oo
Numerical answer [src]
-3.6866953016766e-75
-3.6866953016766e-75
The graph
Limit of the function exp(1/x)