Mister Exam

Other calculators:


exp(-1/x^2)/x

Limit of the function exp(-1/x^2)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -1 \
     | ---|
     |   2|
     |  x |
     |e   |
 lim |----|
x->0+\ x  /
$$\lim_{x \to 0^+}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right)$$
Limit(exp(-1/x^2)/x, x, 0)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     / -1 \
     | ---|
     |   2|
     |  x |
     |e   |
 lim |----|
x->0+\ x  /
$$\lim_{x \to 0^+}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right)$$
0
$$0$$
= 3.10284709730615e-52
     / -1 \
     | ---|
     |   2|
     |  x |
     |e   |
 lim |----|
x->0-\ x  /
$$\lim_{x \to 0^-}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right)$$
0
$$0$$
= -3.10284709730615e-52
= -3.10284709730615e-52
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{- \frac{1}{x^{2}}}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
3.10284709730615e-52
3.10284709730615e-52
The graph
Limit of the function exp(-1/x^2)/x