Mister Exam

Limit of the function 8*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2\
 lim \8*x /
x->0+      
$$\lim_{x \to 0^+}\left(8 x^{2}\right)$$
Limit(8*x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(8 x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(8 x^{2}\right) = 0$$
$$\lim_{x \to \infty}\left(8 x^{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(8 x^{2}\right) = 8$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(8 x^{2}\right) = 8$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(8 x^{2}\right) = \infty$$
More at x→-oo
One‐sided limits [src]
     /   2\
 lim \8*x /
x->0+      
$$\lim_{x \to 0^+}\left(8 x^{2}\right)$$
0
$$0$$
= -7.74644639960699e-31
     /   2\
 lim \8*x /
x->0-      
$$\lim_{x \to 0^-}\left(8 x^{2}\right)$$
0
$$0$$
= -7.74644639960699e-31
= -7.74644639960699e-31
Numerical answer [src]
-7.74644639960699e-31
-7.74644639960699e-31
The graph
Limit of the function 8*x^2