Mister Exam

Other calculators:


e^(3*x)

Limit of the function e^(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3*x
 lim E   
x->0+    
$$\lim_{x \to 0^+} e^{3 x}$$
Limit(E^(3*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
      3*x
 lim E   
x->0+    
$$\lim_{x \to 0^+} e^{3 x}$$
1
$$1$$
= 1.0
      3*x
 lim E   
x->0-    
$$\lim_{x \to 0^-} e^{3 x}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} e^{3 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{3 x} = 1$$
$$\lim_{x \to \infty} e^{3 x} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} e^{3 x} = e^{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{3 x} = e^{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{3 x} = 0$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function e^(3*x)