Mister Exam

Other calculators:


e^(-x)*sin(2*x)

Limit of the function e^(-x)*sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x         \
 lim \E  *sin(2*x)/
x->oo              
$$\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right)$$
Limit(E^(-x)*sin(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
The graph
Limit of the function e^(-x)*sin(2*x)