Mister Exam

Other calculators:


e^(-x)*sin(2*x)

Limit of the function e^(-x)*sin(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x         \
 lim \E  *sin(2*x)/
x->oo              
limx(exsin(2x))\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right)
Limit(E^(-x)*sin(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2000020000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(exsin(2x))=0\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
limx0(exsin(2x))=0\lim_{x \to 0^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
More at x→0 from the left
limx0+(exsin(2x))=0\lim_{x \to 0^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
More at x→0 from the right
limx1(exsin(2x))=sin(2)e\lim_{x \to 1^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}
More at x→1 from the left
limx1+(exsin(2x))=sin(2)e\lim_{x \to 1^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}
More at x→1 from the right
limx(exsin(2x))=,\lim_{x \to -\infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→-oo
The graph
Limit of the function e^(-x)*sin(2*x)