Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of 2^(-n)*2^(1+n)
Limit of (-6+x^2-x)/(9+x^2-6*x)
Graphing y =
:
e^(-x)*sin(2*x)
Derivative of
:
e^(-x)*sin(2*x)
Integral of d{x}
:
e^(-x)*sin(2*x)
Identical expressions
e^(-x)*sin(two *x)
e to the power of ( minus x) multiply by sinus of (2 multiply by x)
e to the power of ( minus x) multiply by sinus of (two multiply by x)
e(-x)*sin(2*x)
e-x*sin2*x
e^(-x)sin(2x)
e(-x)sin(2x)
e-xsin2x
e^-xsin2x
Similar expressions
e^(x)*sin(2*x)
Limit of the function
/
e^(-x)*sin(2*x)
Limit of the function e^(-x)*sin(2*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x \ lim \E *sin(2*x)/ x->oo
lim
x
→
∞
(
e
−
x
sin
(
2
x
)
)
\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right)
x
→
∞
lim
(
e
−
x
sin
(
2
x
)
)
Limit(E^(-x)*sin(2*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20000
20000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
e
−
x
sin
(
2
x
)
)
=
0
\lim_{x \to \infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
x
→
∞
lim
(
e
−
x
sin
(
2
x
)
)
=
0
lim
x
→
0
−
(
e
−
x
sin
(
2
x
)
)
=
0
\lim_{x \to 0^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
x
→
0
−
lim
(
e
−
x
sin
(
2
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
e
−
x
sin
(
2
x
)
)
=
0
\lim_{x \to 0^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = 0
x
→
0
+
lim
(
e
−
x
sin
(
2
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
e
−
x
sin
(
2
x
)
)
=
sin
(
2
)
e
\lim_{x \to 1^-}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}
x
→
1
−
lim
(
e
−
x
sin
(
2
x
)
)
=
e
sin
(
2
)
More at x→1 from the left
lim
x
→
1
+
(
e
−
x
sin
(
2
x
)
)
=
sin
(
2
)
e
\lim_{x \to 1^+}\left(e^{- x} \sin{\left(2 x \right)}\right) = \frac{\sin{\left(2 \right)}}{e}
x
→
1
+
lim
(
e
−
x
sin
(
2
x
)
)
=
e
sin
(
2
)
More at x→1 from the right
lim
x
→
−
∞
(
e
−
x
sin
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to -\infty}\left(e^{- x} \sin{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
x
→
−
∞
lim
(
e
−
x
sin
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
More at x→-oo
The graph