Mister Exam

Other calculators


e^(-x)*sin(2*x)

Derivative of e^(-x)*sin(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -x         
E  *sin(2*x)
exsin(2x)e^{- x} \sin{\left(2 x \right)}
E^(-x)*sin(2*x)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(2x)f{\left(x \right)} = \sin{\left(2 x \right)} and g(x)=exg{\left(x \right)} = e^{x}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    Now plug in to the quotient rule:

    (exsin(2x)+2excos(2x))e2x\left(- e^{x} \sin{\left(2 x \right)} + 2 e^{x} \cos{\left(2 x \right)}\right) e^{- 2 x}

  2. Now simplify:

    (sin(2x)+2cos(2x))ex\left(- \sin{\left(2 x \right)} + 2 \cos{\left(2 x \right)}\right) e^{- x}


The answer is:

(sin(2x)+2cos(2x))ex\left(- \sin{\left(2 x \right)} + 2 \cos{\left(2 x \right)}\right) e^{- x}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
   -x                        -x
- e  *sin(2*x) + 2*cos(2*x)*e  
exsin(2x)+2excos(2x)- e^{- x} \sin{\left(2 x \right)} + 2 e^{- x} \cos{\left(2 x \right)}
The second derivative [src]
                            -x
-(3*sin(2*x) + 4*cos(2*x))*e  
(3sin(2x)+4cos(2x))ex- \left(3 \sin{\left(2 x \right)} + 4 \cos{\left(2 x \right)}\right) e^{- x}
The third derivative [src]
                             -x
(-2*cos(2*x) + 11*sin(2*x))*e  
(11sin(2x)2cos(2x))ex\left(11 \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}
The graph
Derivative of e^(-x)*sin(2*x)