Mister Exam

Other calculators:


(e^(4*x)-e^(3*x))/(-sin(3*x)+sin(4*x))

Limit of the function (e^(4*x)-e^(3*x))/(-sin(3*x)+sin(4*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     4*x    3*x     \
     |    E    - E        |
 lim |--------------------|
x->0+\-sin(3*x) + sin(4*x)/
$$\lim_{x \to 0^+}\left(\frac{e^{4 x} - e^{3 x}}{- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}}\right)$$
Limit((E^(4*x) - E^(3*x))/(-sin(3*x) + sin(4*x)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\left(e^{x} - 1\right) e^{3 x}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{e^{4 x} - e^{3 x}}{- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\left(e^{x} - 1\right) e^{3 x}}{- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(e^{x} - 1\right) e^{3 x}}{\frac{d}{d x} \left(- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 e^{4 x} - 3 e^{3 x}}{- 3 \cos{\left(3 x \right)} + 4 \cos{\left(4 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{4 e^{4 x} - 3 e^{3 x}}{- 3 \cos{\left(3 x \right)} + 4 \cos{\left(4 x \right)}}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /     4*x    3*x     \
     |    E    - E        |
 lim |--------------------|
x->0+\-sin(3*x) + sin(4*x)/
$$\lim_{x \to 0^+}\left(\frac{e^{4 x} - e^{3 x}}{- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}}\right)$$
1
$$1$$
= 1.0
     /     4*x    3*x     \
     |    E    - E        |
 lim |--------------------|
x->0-\-sin(3*x) + sin(4*x)/
$$\lim_{x \to 0^-}\left(\frac{e^{4 x} - e^{3 x}}{- \sin{\left(3 x \right)} + \sin{\left(4 x \right)}}\right)$$
1
$$1$$
= 1.0
= 1.0
Numerical answer [src]
1.0
1.0
The graph
Limit of the function (e^(4*x)-e^(3*x))/(-sin(3*x)+sin(4*x))