Mister Exam

Limit of the function e*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (E*x)
x->0+     
$$\lim_{x \to 0^+}\left(e x\right)$$
Limit(E*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (E*x)
x->0+     
$$\lim_{x \to 0^+}\left(e x\right)$$
0
$$0$$
= 2.32586864602047e-32
 lim (E*x)
x->0-     
$$\lim_{x \to 0^-}\left(e x\right)$$
0
$$0$$
= -2.32586864602047e-32
= -2.32586864602047e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(e x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e x\right) = 0$$
$$\lim_{x \to \infty}\left(e x\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(e x\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e x\right) = e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(e x\right) = -\infty$$
More at x→-oo
Rapid solution [src]
0
$$0$$
Numerical answer [src]
2.32586864602047e-32
2.32586864602047e-32
The graph
Limit of the function e*x