$$\lim_{x \to 3 \pi^-} \cot{\left(\frac{x}{3} \right)} = \infty$$ More at x→3*pi from the left $$\lim_{x \to 3 \pi^+} \cot{\left(\frac{x}{3} \right)} = \infty$$ $$\lim_{x \to \infty} \cot{\left(\frac{x}{3} \right)} = \cot{\left(\infty \right)}$$ More at x→oo $$\lim_{x \to 0^-} \cot{\left(\frac{x}{3} \right)} = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \cot{\left(\frac{x}{3} \right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \cot{\left(\frac{x}{3} \right)} = \frac{1}{\tan{\left(\frac{1}{3} \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cot{\left(\frac{x}{3} \right)} = \frac{1}{\tan{\left(\frac{1}{3} \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cot{\left(\frac{x}{3} \right)} = - \cot{\left(\infty \right)}$$ More at x→-oo