Mister Exam

Other calculators:


cot(x/3)

Limit of the function cot(x/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
           /x\
  lim   cot|-|
x->3*pi+   \3/
limx3π+cot(x3)\lim_{x \to 3 \pi^+} \cot{\left(\frac{x}{3} \right)}
Limit(cot(x/3), x, 3*pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
05-15-10-51015-50000000000000005000000000000000
Other limits x→0, -oo, +oo, 1
limx3πcot(x3)=\lim_{x \to 3 \pi^-} \cot{\left(\frac{x}{3} \right)} = \infty
More at x→3*pi from the left
limx3π+cot(x3)=\lim_{x \to 3 \pi^+} \cot{\left(\frac{x}{3} \right)} = \infty
limxcot(x3)=cot()\lim_{x \to \infty} \cot{\left(\frac{x}{3} \right)} = \cot{\left(\infty \right)}
More at x→oo
limx0cot(x3)=\lim_{x \to 0^-} \cot{\left(\frac{x}{3} \right)} = -\infty
More at x→0 from the left
limx0+cot(x3)=\lim_{x \to 0^+} \cot{\left(\frac{x}{3} \right)} = \infty
More at x→0 from the right
limx1cot(x3)=1tan(13)\lim_{x \to 1^-} \cot{\left(\frac{x}{3} \right)} = \frac{1}{\tan{\left(\frac{1}{3} \right)}}
More at x→1 from the left
limx1+cot(x3)=1tan(13)\lim_{x \to 1^+} \cot{\left(\frac{x}{3} \right)} = \frac{1}{\tan{\left(\frac{1}{3} \right)}}
More at x→1 from the right
limxcot(x3)=cot()\lim_{x \to -\infty} \cot{\left(\frac{x}{3} \right)} = - \cot{\left(\infty \right)}
More at x→-oo
Rapid solution [src]
oo
\infty
One‐sided limits [src]
           /x\
  lim   cot|-|
x->3*pi+   \3/
limx3π+cot(x3)\lim_{x \to 3 \pi^+} \cot{\left(\frac{x}{3} \right)}
oo
\infty
= 452.999264164613
           /x\
  lim   cot|-|
x->3*pi-   \3/
limx3πcot(x3)\lim_{x \to 3 \pi^-} \cot{\left(\frac{x}{3} \right)}
-oo
-\infty
= -452.999264164563
= -452.999264164563
Numerical answer [src]
452.999264164613
452.999264164613
The graph
Limit of the function cot(x/3)