Mister Exam

Other calculators:


cot(x)/(pi-2*x)

Limit of the function cot(x)/(pi-2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / cot(x) \
 lim  |--------|
   pi \pi - 2*x/
x->--+          
   2            
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
Limit(cot(x)/(pi - 2*x), x, pi/2)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to \frac{\pi}{2}^+} \cot{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to \frac{\pi}{2}^+}\left(- 2 x + \pi\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\frac{d}{d x} \cot{\left(x \right)}}{\frac{d}{d x} \left(- 2 x + \pi\right)}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)$$
=
$$\frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1/2
$$\frac{1}{2}$$
One‐sided limits [src]
      / cot(x) \
 lim  |--------|
   pi \pi - 2*x/
x->--+          
   2            
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
      / cot(x) \
 lim  |--------|
   pi \pi - 2*x/
x->---          
   2            
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
1/2
$$\frac{1}{2}$$
= 0.5
= 0.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = \frac{1}{2}$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = \frac{\cot{\left(1 \right)}}{-2 + \pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right) = \frac{\cot{\left(1 \right)}}{-2 + \pi}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
More at x→-oo
Numerical answer [src]
0.5
0.5
The graph
Limit of the function cot(x)/(pi-2*x)