We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to \frac{\pi}{2}^+} \cot{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to \frac{\pi}{2}^+}\left(- 2 x + \pi\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot{\left(x \right)}}{- 2 x + \pi}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\frac{d}{d x} \cot{\left(x \right)}}{\frac{d}{d x} \left(- 2 x + \pi\right)}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)$$
=
$$\lim_{x \to \frac{\pi}{2}^+}\left(\frac{\cot^{2}{\left(x \right)}}{2} + \frac{1}{2}\right)$$
=
$$\frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)