$$\lim_{x \to 0^-}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\cot{\left(4 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \frac{\cot{\left(4 \right)}}{\sin{\left(2 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\cot{\left(4 x \right)}}{\sin{\left(2 x \right)}}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo