Mister Exam

Other calculators:


cot(n)

Limit of the function cot(n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cot(n)
n->oo      
$$\lim_{n \to \infty} \cot{\left(n \right)}$$
Limit(cot(n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \cot{\left(n \right)} = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{n \to 0^-} \cot{\left(n \right)} = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+} \cot{\left(n \right)} = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-} \cot{\left(n \right)} = \cot{\left(1 \right)}$$
More at n→1 from the left
$$\lim_{n \to 1^+} \cot{\left(n \right)} = \cot{\left(1 \right)}$$
More at n→1 from the right
$$\lim_{n \to -\infty} \cot{\left(n \right)} = \left\langle -\infty, \infty\right\rangle$$
More at n→-oo
Rapid solution [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
The graph
Limit of the function cot(n)