Mister Exam

Other calculators:


cot(5*x)

Limit of the function cot(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cot(5*x)
x->oo        
$$\lim_{x \to \infty} \cot{\left(5 x \right)}$$
Limit(cot(5*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \cot{\left(5 x \right)} = \cot{\left(\infty \right)}$$
$$\lim_{x \to 0^-} \cot{\left(5 x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot{\left(5 x \right)} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cot{\left(5 x \right)} = - \cot{\left(\infty \right)}$$
More at x→-oo
Rapid solution [src]
cot(oo)
$$\cot{\left(\infty \right)}$$
The graph
Limit of the function cot(5*x)