$$\lim_{x \to \infty} \cot{\left(5 x \right)} = \cot{\left(\infty \right)}$$ $$\lim_{x \to 0^-} \cot{\left(5 x \right)} = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \cot{\left(5 x \right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cot{\left(5 x \right)} = - \cot{\left(\infty \right)}$$ More at x→-oo