Mister Exam

Other calculators:


cot(8*pi*x)

Limit of the function cot(8*pi*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cot(8*pi*x)
x->2+           
$$\lim_{x \to 2^+} \cot{\left(8 \pi x \right)}$$
Limit(cot(8*pi*x), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
 lim cot(8*pi*x)
x->2+           
$$\lim_{x \to 2^+} \cot{\left(8 \pi x \right)}$$
oo
$$\infty$$
= 5.95251570050224
 lim cot(8*pi*x)
x->2-           
$$\lim_{x \to 2^-} \cot{\left(8 \pi x \right)}$$
-oo
$$-\infty$$
= -5.95251570050224
= -5.95251570050224
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \cot{\left(8 \pi x \right)} = \infty$$
More at x→2 from the left
$$\lim_{x \to 2^+} \cot{\left(8 \pi x \right)} = \infty$$
$$\lim_{x \to \infty} \cot{\left(8 \pi x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \cot{\left(8 \pi x \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cot{\left(8 \pi x \right)} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cot{\left(8 \pi x \right)} = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cot{\left(8 \pi x \right)} = \infty$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cot{\left(8 \pi x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
5.95251570050224
5.95251570050224
The graph
Limit of the function cot(8*pi*x)