Mister Exam

Other calculators


cos(x)/sin(x)

Integral of cos(x)/sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |  sin(x)   
 |           
/            
0            
01cos(x)sin(x)dx\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx
Integral(cos(x)/sin(x), (x, 0, 1))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

    Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

    1udu\int \frac{1}{u}\, du

    1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

    Now substitute uu back in:

    log(sin(x))\log{\left(\sin{\left(x \right)} \right)}

  2. Add the constant of integration:

    log(sin(x))+constant\log{\left(\sin{\left(x \right)} \right)}+ \mathrm{constant}


The answer is:

log(sin(x))+constant\log{\left(\sin{\left(x \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           
 |                            
 | cos(x)                     
 | ------ dx = C + log(sin(x))
 | sin(x)                     
 |                            
/                             
cos(x)sin(x)dx=C+log(sin(x))\int \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = C + \log{\left(\sin{\left(x \right)} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1000010000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
43.9178423877238
43.9178423877238
The graph
Integral of cos(x)/sin(x) dx

    Use the examples entering the upper and lower limits of integration.