$$\lim_{x \to \infty} \cos{\left(\sin{\left(x \right)} \right)} = \left\langle \cos{\left(1 \right)}, 1\right\rangle$$
$$\lim_{x \to 0^-} \cos{\left(\sin{\left(x \right)} \right)} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \cos{\left(\sin{\left(x \right)} \right)} = 1$$
More at x→0 from the right$$\lim_{x \to 1^-} \cos{\left(\sin{\left(x \right)} \right)} = \cos{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \cos{\left(\sin{\left(x \right)} \right)} = \cos{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \cos{\left(\sin{\left(x \right)} \right)} = \left\langle \cos{\left(1 \right)}, 1\right\rangle$$
More at x→-oo