Mister Exam

Other calculators:

Limit of the function cos(n*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cos(n*x)
n->oo        
$$\lim_{n \to \infty} \cos{\left(n x \right)}$$
Limit(cos(n*x), n, oo, dir='-')
Rapid solution [src]
cos(zoo*x)
$$\cos{\left(\tilde{\infty} x \right)}$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \cos{\left(n x \right)} = \cos{\left(\tilde{\infty} x \right)}$$
$$\lim_{n \to 0^-} \cos{\left(n x \right)} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} \cos{\left(n x \right)} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} \cos{\left(n x \right)} = \cos{\left(x \right)}$$
More at n→1 from the left
$$\lim_{n \to 1^+} \cos{\left(n x \right)} = \cos{\left(x \right)}$$
More at n→1 from the right
$$\lim_{n \to -\infty} \cos{\left(n x \right)} = \cos{\left(\tilde{\infty} x \right)}$$
More at n→-oo