$$\lim_{n \to \infty} \cos{\left(n \right)} = \left\langle -1, 1\right\rangle$$ $$\lim_{n \to 0^-} \cos{\left(n \right)} = 1$$ More at n→0 from the left $$\lim_{n \to 0^+} \cos{\left(n \right)} = 1$$ More at n→0 from the right $$\lim_{n \to 1^-} \cos{\left(n \right)} = \cos{\left(1 \right)}$$ More at n→1 from the left $$\lim_{n \to 1^+} \cos{\left(n \right)} = \cos{\left(1 \right)}$$ More at n→1 from the right $$\lim_{n \to -\infty} \cos{\left(n \right)} = \left\langle -1, 1\right\rangle$$ More at n→-oo