Mister Exam

Other calculators:


acot(3*x)

Limit of the function acot(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim acot(3*x)
x->oo         
limxacot(3x)\lim_{x \to \infty} \operatorname{acot}{\left(3 x \right)}
Limit(acot(3*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102.5-2.5
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limxacot(3x)=0\lim_{x \to \infty} \operatorname{acot}{\left(3 x \right)} = 0
limx0acot(3x)=π2\lim_{x \to 0^-} \operatorname{acot}{\left(3 x \right)} = - \frac{\pi}{2}
More at x→0 from the left
limx0+acot(3x)=π2\lim_{x \to 0^+} \operatorname{acot}{\left(3 x \right)} = \frac{\pi}{2}
More at x→0 from the right
limx1acot(3x)=acot(3)\lim_{x \to 1^-} \operatorname{acot}{\left(3 x \right)} = \operatorname{acot}{\left(3 \right)}
More at x→1 from the left
limx1+acot(3x)=acot(3)\lim_{x \to 1^+} \operatorname{acot}{\left(3 x \right)} = \operatorname{acot}{\left(3 \right)}
More at x→1 from the right
limxacot(3x)=0\lim_{x \to -\infty} \operatorname{acot}{\left(3 x \right)} = 0
More at x→-oo
The graph
Limit of the function acot(3*x)