$$\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = \frac{\pi}{6}$$
$$\lim_{x \to 0^-}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = \frac{\pi}{12}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = \frac{\pi}{12}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\operatorname{atan}{\left(x \right)}}{3}\right) = - \frac{\pi}{6}$$
More at x→-oo