Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+n)/(2+n)
Limit of (1-7/x)^x
Limit of ((-2+x)/(1+x))^(-3+2*x)
Limit of ((1+x^2)/(-1+x^2))^(x^2)
Integral of d{x}
:
atan(x)/(1+x^2)
Identical expressions
atan(x)/(one +x^ two)
arc tangent of gent of (x) divide by (1 plus x squared )
arc tangent of gent of (x) divide by (one plus x to the power of two)
atan(x)/(1+x2)
atanx/1+x2
atan(x)/(1+x²)
atan(x)/(1+x to the power of 2)
atanx/1+x^2
atan(x) divide by (1+x^2)
Similar expressions
atan(x)/(1-x^2)
arctan(x)/(1+x^2)
arctanx/(1+x^2)
Limit of the function
/
atan(x)/(1+x^2)
Limit of the function atan(x)/(1+x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/atan(x)\ lim |-------| x->oo| 2| \ 1 + x /
lim
x
→
∞
(
atan
(
x
)
x
2
+
1
)
\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right)
x
→
∞
lim
(
x
2
+
1
atan
(
x
)
)
Limit(atan(x)/(1 + x^2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
1.0
-1.0
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
atan
(
x
)
x
2
+
1
)
=
0
\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = 0
x
→
∞
lim
(
x
2
+
1
atan
(
x
)
)
=
0
lim
x
→
0
−
(
atan
(
x
)
x
2
+
1
)
=
0
\lim_{x \to 0^-}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = 0
x
→
0
−
lim
(
x
2
+
1
atan
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
atan
(
x
)
x
2
+
1
)
=
0
\lim_{x \to 0^+}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = 0
x
→
0
+
lim
(
x
2
+
1
atan
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
atan
(
x
)
x
2
+
1
)
=
π
8
\lim_{x \to 1^-}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = \frac{\pi}{8}
x
→
1
−
lim
(
x
2
+
1
atan
(
x
)
)
=
8
π
More at x→1 from the left
lim
x
→
1
+
(
atan
(
x
)
x
2
+
1
)
=
π
8
\lim_{x \to 1^+}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = \frac{\pi}{8}
x
→
1
+
lim
(
x
2
+
1
atan
(
x
)
)
=
8
π
More at x→1 from the right
lim
x
→
−
∞
(
atan
(
x
)
x
2
+
1
)
=
0
\lim_{x \to -\infty}\left(\frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\right) = 0
x
→
−
∞
lim
(
x
2
+
1
atan
(
x
)
)
=
0
More at x→-oo
The graph