Mister Exam

Other calculators


atan(x)/(1+x^2)

Integral of atan(x)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  atan(x)   
 |  ------- dx
 |        2   
 |   1 + x    
 |            
/             
0             
01atan(x)x2+1dx\int\limits_{0}^{1} \frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\, dx
Integral(atan(x)/(1 + x^2), (x, 0, 1))
Detail solution
  1. Let u=atan(x)u = \operatorname{atan}{\left(x \right)}.

    Then let du=dxx2+1du = \frac{dx}{x^{2} + 1} and substitute dudu:

    udu\int u\, du

    1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

      udu=u22\int u\, du = \frac{u^{2}}{2}

    Now substitute uu back in:

    atan2(x)2\frac{\operatorname{atan}^{2}{\left(x \right)}}{2}

  2. Add the constant of integration:

    atan2(x)2+constant\frac{\operatorname{atan}^{2}{\left(x \right)}}{2}+ \mathrm{constant}


The answer is:

atan2(x)2+constant\frac{\operatorname{atan}^{2}{\left(x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                      2   
 | atan(x)          atan (x)
 | ------- dx = C + --------
 |       2             2    
 |  1 + x                   
 |                          
/                           
atan(x)x2+1dx=C+atan2(x)2\int \frac{\operatorname{atan}{\left(x \right)}}{x^{2} + 1}\, dx = C + \frac{\operatorname{atan}^{2}{\left(x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00.5
Numerical answer [src]
0.308425137534042
0.308425137534042
The graph
Integral of atan(x)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.