Mister Exam

Other calculators:


asin(x/2)

Limit of the function asin(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /x\
 lim asin|-|
x->2+    \2/
$$\lim_{x \to 2^+} \operatorname{asin}{\left(\frac{x}{2} \right)}$$
Limit(asin(x/2), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
pi
--
2 
$$\frac{\pi}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \operatorname{asin}{\left(\frac{x}{2} \right)} = \frac{\pi}{2}$$
More at x→2 from the left
$$\lim_{x \to 2^+} \operatorname{asin}{\left(\frac{x}{2} \right)} = \frac{\pi}{2}$$
$$\lim_{x \to \infty} \operatorname{asin}{\left(\frac{x}{2} \right)} = - \infty i$$
More at x→oo
$$\lim_{x \to 0^-} \operatorname{asin}{\left(\frac{x}{2} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{asin}{\left(\frac{x}{2} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \operatorname{asin}{\left(\frac{x}{2} \right)} = \frac{\pi}{6}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{asin}{\left(\frac{x}{2} \right)} = \frac{\pi}{6}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{asin}{\left(\frac{x}{2} \right)} = \infty i$$
More at x→-oo
One‐sided limits [src]
         /x\
 lim asin|-|
x->2+    \2/
$$\lim_{x \to 2^+} \operatorname{asin}{\left(\frac{x}{2} \right)}$$
pi
--
2 
$$\frac{\pi}{2}$$
= (1.5707963267949 - 0.0141259745533598j)
         /x\
 lim asin|-|
x->2-    \2/
$$\lim_{x \to 2^-} \operatorname{asin}{\left(\frac{x}{2} \right)}$$
pi
--
2 
$$\frac{\pi}{2}$$
= 1.55672424115329
= 1.55672424115329
Numerical answer [src]
(1.5707963267949 - 0.0141259745533598j)
(1.5707963267949 - 0.0141259745533598j)
The graph
Limit of the function asin(x/2)