Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of (4-x^2)/(3-x^2)
Limit of (3+2*x)/(1-5*x)
Limit of (1-2*cos(x))/sin(3*x)
Identical expressions
a^x/x
a to the power of x divide by x
ax/x
a^x divide by x
Limit of the function
/
a^x/x
Limit of the function a^x/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ |a | lim |--| x->oo\x /
$$\lim_{x \to \infty}\left(\frac{a^{x}}{x}\right)$$
Limit(a^x/x, x, oo, dir='-')
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{a^{x}}{x}\right)$$
$$\lim_{x \to 0^-}\left(\frac{a^{x}}{x}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{a^{x}}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{a^{x}}{x}\right) = a$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{a^{x}}{x}\right) = a$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{a^{x}}{x}\right)$$
More at x→-oo
Rapid solution
[src]
None
None
Expand and simplify