Integral of 0,136*x*y dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫12517xydx=12517y∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
So, the result is: 25017x2y
-
Add the constant of integration:
25017x2y+constant
The answer is:
25017x2y+constant
The answer (Indefinite)
[src]
/
| 2
| 17*x*y 17*y*x
| ------ dx = C + -------
| 125 250
|
/
25017x2y
3 2
17*y 17*y*(4 - y)
- ----- + -------------
2250 250
12517y(2y2−8y+16−18y2)
=
3 2
17*y 17*y*(4 - y)
- ----- + -------------
2250 250
−225017y3+25017y(4−y)2
Use the examples entering the upper and lower limits of integration.