Integral of sqrt(x^2-1)/x dx
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=tan(_theta)**2, substep=RewriteRule(rewritten=sec(_theta)**2 - 1, substep=AddRule(substeps=[TrigRule(func='sec**2', arg=_theta, context=sec(_theta)**2, symbol=_theta), ConstantRule(constant=-1, context=-1, symbol=_theta)], context=sec(_theta)**2 - 1, symbol=_theta), context=tan(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=sqrt(x**2 - 1)/x, symbol=x)
-
Add the constant of integration:
{x2−1−acos(x1)forx>−1∧x<1+constant
The answer is:
{x2−1−acos(x1)forx>−1∧x<1+constant
The answer (Indefinite)
[src]
/
|
| ________
| / 2 // _________ \
| \/ x - 1 || / 2 /1\ |
| ----------- dx = C + |<\/ -1 + x - acos|-| for And(x > -1, x < 1)|
| x || \x/ |
| \\ /
/
∫xx2−1dx=C+{x2−1−acos(x1)forx>−1∧x<1
The graph
(0.0 + 43.7835933145528j)
(0.0 + 43.7835933145528j)
Use the examples entering the upper and lower limits of integration.