1 / | | ________ | / 2 | \/ x - 1 | ----------- dx | x | / 0
Integral(sqrt(x^2 - 1)/x, (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=tan(_theta)**2, substep=RewriteRule(rewritten=sec(_theta)**2 - 1, substep=AddRule(substeps=[TrigRule(func='sec**2', arg=_theta, context=sec(_theta)**2, symbol=_theta), ConstantRule(constant=-1, context=-1, symbol=_theta)], context=sec(_theta)**2 - 1, symbol=_theta), context=tan(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=sqrt(x**2 - 1)/x, symbol=x)
Add the constant of integration:
The answer is:
/ | | ________ | / 2 // _________ \ | \/ x - 1 || / 2 /1\ | | ----------- dx = C + |<\/ -1 + x - acos|-| for And(x > -1, x < 1)| | x || \x/ | | \\ / /
Use the examples entering the upper and lower limits of integration.