Mister Exam

Other calculators


sqrt(x^2-1)/x

Integral of sqrt(x^2-1)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     ________   
 |    /  2        
 |  \/  x  - 1    
 |  ----------- dx
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\sqrt{x^{2} - 1}}{x}\, dx$$
Integral(sqrt(x^2 - 1)/x, (x, 0, 1))
Detail solution

    TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=tan(_theta)**2, substep=RewriteRule(rewritten=sec(_theta)**2 - 1, substep=AddRule(substeps=[TrigRule(func='sec**2', arg=_theta, context=sec(_theta)**2, symbol=_theta), ConstantRule(constant=-1, context=-1, symbol=_theta)], context=sec(_theta)**2 - 1, symbol=_theta), context=tan(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=sqrt(x**2 - 1)/x, symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                      
 |                                                                       
 |    ________                                                           
 |   /  2               //   _________                                  \
 | \/  x  - 1           ||  /       2        /1\                        |
 | ----------- dx = C + |<\/  -1 + x   - acos|-|  for And(x > -1, x < 1)|
 |      x               ||                   \x/                        |
 |                      \\                                              /
/                                                                        
$$\int \frac{\sqrt{x^{2} - 1}}{x}\, dx = C + \begin{cases} \sqrt{x^{2} - 1} - \operatorname{acos}{\left(\frac{1}{x} \right)} & \text{for}\: x > -1 \wedge x < 1 \end{cases}$$
The graph
Numerical answer [src]
(0.0 + 43.7835933145528j)
(0.0 + 43.7835933145528j)
The graph
Integral of sqrt(x^2-1)/x dx

    Use the examples entering the upper and lower limits of integration.