Mister Exam

Other calculators


3*x/(x^2+1)

Integral of 3*x/(x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   3*x     
 |  ------ dx
 |   2       
 |  x  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{3 x}{x^{2} + 1}\, dx$$
Integral((3*x)/(x^2 + 1), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |  3*x     
 | ------ dx
 |  2       
 | x  + 1   
 |          
/           
Rewrite the integrand
               2*x                 
         3*------------      /0\   
            2                |-|   
 3*x       x  + 0*x + 1      \1/   
------ = -------------- + ---------
 2             2              2    
x  + 1                    (-x)  + 1
or
  /           
 |            
 |  3*x       
 | ------ dx  
 |  2        =
 | x  + 1     
 |            
/             
  
    /               
   |                
   |     2*x        
3* | ------------ dx
   |  2             
   | x  + 0*x + 1   
   |                
  /                 
--------------------
         2          
In the integral
    /               
   |                
   |     2*x        
3* | ------------ dx
   |  2             
   | x  + 0*x + 1   
   |                
  /                 
--------------------
         2          
do replacement
     2
u = x 
then
the integral =
    /                       
   |                        
   |   1                    
3* | ----- du               
   | 1 + u                  
   |                        
  /             3*log(1 + u)
------------- = ------------
      2              2      
do backward replacement
    /                               
   |                                
   |     2*x                        
3* | ------------ dx                
   |  2                             
   | x  + 0*x + 1                   
   |                        /     2\
  /                    3*log\1 + x /
-------------------- = -------------
         2                   2      
In the integral
0
do replacement
v = -x
then
the integral =
True
do backward replacement
True
Solution is:
         /     2\
    3*log\1 + x /
C + -------------
          2      
The answer (Indefinite) [src]
  /                             
 |                      /     2\
 |  3*x            3*log\1 + x /
 | ------ dx = C + -------------
 |  2                    2      
 | x  + 1                       
 |                              
/                               
$$\int \frac{3 x}{x^{2} + 1}\, dx = C + \frac{3 \log{\left(x^{2} + 1 \right)}}{2}$$
The graph
The answer [src]
3*log(2)
--------
   2    
$$\frac{3 \log{\left(2 \right)}}{2}$$
=
=
3*log(2)
--------
   2    
$$\frac{3 \log{\left(2 \right)}}{2}$$
3*log(2)/2
Numerical answer [src]
1.03972077083992
1.03972077083992
The graph
Integral of 3*x/(x^2+1) dx

    Use the examples entering the upper and lower limits of integration.