Integral of 0.5*cos(x+pi/4) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(x+4π)dx=2∫cos(x+4π)dx
-
Let u=x+4π.
Then let du=dx and substitute du:
∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
Now substitute u back in:
sin(x+4π)
So, the result is: 2sin(x+4π)
-
Now simplify:
2sin(x+4π)
-
Add the constant of integration:
2sin(x+4π)+constant
The answer is:
2sin(x+4π)+constant
The answer (Indefinite)
[src]
/
|
| / pi\ / pi\
| cos|x + --| sin|x + --|
| \ 4 / \ 4 /
| ----------- dx = C + -----------
| 2 2
|
/
∫2cos(x+4π)dx=C+2sin(x+4π)
The graph
/ pi\
sin|4 + --| ___
\ 4 / \/ 2
----------- - -----
2 4
2sin(4π+4)−42
=
/ pi\
sin|4 + --| ___
\ 4 / \/ 2
----------- - -----
2 4
2sin(4π+4)−42
sin(4 + pi/4)/2 - sqrt(2)/4
Use the examples entering the upper and lower limits of integration.