Mister Exam

Integral of zcosz dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  z*cos(z) dz
 |             
/              
0              
$$\int\limits_{0}^{1} z \cos{\left(z \right)}\, dz$$
Integral(z*cos(z), (z, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  2. The integral of sine is negative cosine:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | z*cos(z) dz = C + z*sin(z) + cos(z)
 |                                    
/                                     
$$\int z \cos{\left(z \right)}\, dz = C + z \sin{\left(z \right)} + \cos{\left(z \right)}$$
The graph
The answer [src]
-1 + cos(1) + sin(1)
$$-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
=
=
-1 + cos(1) + sin(1)
$$-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
-1 + cos(1) + sin(1)
Numerical answer [src]
0.381773290676036
0.381773290676036
The graph
Integral of zcosz dx

    Use the examples entering the upper and lower limits of integration.