Mister Exam

Integral of sin(z)*cos(z) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  I                 
  /                 
 |                  
 |  sin(z)*cos(z) dz
 |                  
/                   
0                   
$$\int\limits_{0}^{i} \sin{\left(z \right)} \cos{\left(z \right)}\, dz$$
Integral(sin(z)*cos(z), (z, 0, i))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          2   
 |                        sin (z)
 | sin(z)*cos(z) dz = C + -------
 |                           2   
/                                
$$\int \sin{\left(z \right)} \cos{\left(z \right)}\, dz = C + \frac{\sin^{2}{\left(z \right)}}{2}$$
The answer [src]
     2    
-sinh (1) 
----------
    2     
$$- \frac{\sinh^{2}{\left(1 \right)}}{2}$$
=
=
     2    
-sinh (1) 
----------
    2     
$$- \frac{\sinh^{2}{\left(1 \right)}}{2}$$
-sinh(1)^2/2
Numerical answer [src]
(-0.690548922770908 + 0.0j)
(-0.690548922770908 + 0.0j)

    Use the examples entering the upper and lower limits of integration.