I / | | sin(z)*cos(z) dz | / 0
Integral(sin(z)*cos(z), (z, 0, i))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ 2 | sin (z) | sin(z)*cos(z) dz = C + ------- | 2 /
2 -sinh (1) ---------- 2
=
2 -sinh (1) ---------- 2
-sinh(1)^2/2
Use the examples entering the upper and lower limits of integration.