pi / | | y*cos(2*x*y) dy | / pi -- 2
Integral(y*cos((2*x)*y), (y, pi/2, pi))
// 2 \
|| y |
|| -- for x = 0|
|| 2 |
/ || | // y for x = 0\
| ||/-cos(2*x*y) | || |
| y*cos(2*x*y) dy = C - |<|------------ for 2*x != 0 | + y*|
/ cos(pi*x) cos(2*pi*x) pi*sin(2*pi*x) pi*sin(pi*x) |- --------- + ----------- + -------------- - ------------ for And(x > -oo, x < oo, x != 0) | 2 2 2*x 4*x | 4*x 4*x < | 2 | 3*pi | ----- otherwise \ 8
=
/ cos(pi*x) cos(2*pi*x) pi*sin(2*pi*x) pi*sin(pi*x) |- --------- + ----------- + -------------- - ------------ for And(x > -oo, x < oo, x != 0) | 2 2 2*x 4*x | 4*x 4*x < | 2 | 3*pi | ----- otherwise \ 8
Piecewise((-cos(pi*x)/(4*x^2) + cos(2*pi*x)/(4*x^2) + pi*sin(2*pi*x)/(2*x) - pi*sin(pi*x)/(4*x), (x > -oo)∧(x < oo)∧(Ne(x, 0))), (3*pi^2/8, True))
Use the examples entering the upper and lower limits of integration.