2 / | | y*cos(2*x)*y dx | / 1
Integral((y*cos(2*x))*y, (x, 1, 2))
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
Add the constant of integration:
The answer is:
/ 2 | y *sin(2*x) | y*cos(2*x)*y dx = C + ----------- | 2 /
2 2 y *sin(4) y *sin(2) --------- - --------- 2 2
=
2 2 y *sin(4) y *sin(2) --------- - --------- 2 2
y^2*sin(4)/2 - y^2*sin(2)/2
Use the examples entering the upper and lower limits of integration.