Mister Exam

Integral of ycos2xy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                
  /                
 |                 
 |  y*cos(2*x)*y dx
 |                 
/                  
1                  
12yycos(2x)dx\int\limits_{1}^{2} y y \cos{\left(2 x \right)}\, dx
Integral((y*cos(2*x))*y, (x, 1, 2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    yycos(2x)dx=yycos(2x)dx\int y y \cos{\left(2 x \right)}\, dx = y \int y \cos{\left(2 x \right)}\, dx

    1. The integral of a constant times a function is the constant times the integral of the function:

      ycos(2x)dx=ycos(2x)dx\int y \cos{\left(2 x \right)}\, dx = y \int \cos{\left(2 x \right)}\, dx

      1. Let u=2xu = 2 x.

        Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

        cos(u)2du\int \frac{\cos{\left(u \right)}}{2}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du2\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

      So, the result is: ysin(2x)2\frac{y \sin{\left(2 x \right)}}{2}

    So, the result is: y2sin(2x)2\frac{y^{2} \sin{\left(2 x \right)}}{2}

  2. Add the constant of integration:

    y2sin(2x)2+constant\frac{y^{2} \sin{\left(2 x \right)}}{2}+ \mathrm{constant}


The answer is:

y2sin(2x)2+constant\frac{y^{2} \sin{\left(2 x \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                       2         
 |                       y *sin(2*x)
 | y*cos(2*x)*y dx = C + -----------
 |                            2     
/                                   
yycos(2x)dx=C+y2sin(2x)2\int y y \cos{\left(2 x \right)}\, dx = C + \frac{y^{2} \sin{\left(2 x \right)}}{2}
The answer [src]
 2           2       
y *sin(4)   y *sin(2)
--------- - ---------
    2           2    
y2sin(2)2+y2sin(4)2- \frac{y^{2} \sin{\left(2 \right)}}{2} + \frac{y^{2} \sin{\left(4 \right)}}{2}
=
=
 2           2       
y *sin(4)   y *sin(2)
--------- - ---------
    2           2    
y2sin(2)2+y2sin(4)2- \frac{y^{2} \sin{\left(2 \right)}}{2} + \frac{y^{2} \sin{\left(4 \right)}}{2}
y^2*sin(4)/2 - y^2*sin(2)/2

    Use the examples entering the upper and lower limits of integration.