Integral of ycos2xy dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫yycos(2x)dx=y∫ycos(2x)dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫ycos(2x)dx=y∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 2ysin(2x)
So, the result is: 2y2sin(2x)
-
Add the constant of integration:
2y2sin(2x)+constant
The answer is:
2y2sin(2x)+constant
The answer (Indefinite)
[src]
/ 2
| y *sin(2*x)
| y*cos(2*x)*y dx = C + -----------
| 2
/
∫yycos(2x)dx=C+2y2sin(2x)
2 2
y *sin(4) y *sin(2)
--------- - ---------
2 2
−2y2sin(2)+2y2sin(4)
=
2 2
y *sin(4) y *sin(2)
--------- - ---------
2 2
−2y2sin(2)+2y2sin(4)
y^2*sin(4)/2 - y^2*sin(2)/2
Use the examples entering the upper and lower limits of integration.