Mister Exam

Integral of ycos2xy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                
  /                
 |                 
 |  y*cos(2*x)*y dx
 |                 
/                  
1                  
$$\int\limits_{1}^{2} y y \cos{\left(2 x \right)}\, dx$$
Integral((y*cos(2*x))*y, (x, 1, 2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       2         
 |                       y *sin(2*x)
 | y*cos(2*x)*y dx = C + -----------
 |                            2     
/                                   
$$\int y y \cos{\left(2 x \right)}\, dx = C + \frac{y^{2} \sin{\left(2 x \right)}}{2}$$
The answer [src]
 2           2       
y *sin(4)   y *sin(2)
--------- - ---------
    2           2    
$$- \frac{y^{2} \sin{\left(2 \right)}}{2} + \frac{y^{2} \sin{\left(4 \right)}}{2}$$
=
=
 2           2       
y *sin(4)   y *sin(2)
--------- - ---------
    2           2    
$$- \frac{y^{2} \sin{\left(2 \right)}}{2} + \frac{y^{2} \sin{\left(4 \right)}}{2}$$
y^2*sin(4)/2 - y^2*sin(2)/2

    Use the examples entering the upper and lower limits of integration.