Mister Exam

Integral of xlnx-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  (x*log(x) - x) dx
 |                   
/                    
0                    
01(xlog(x)x)dx\int\limits_{0}^{1} \left(x \log{\left(x \right)} - x\right)\, dx
Integral(x*log(x) - x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. There are multiple ways to do this integral.

      Method #1

      1. Let u=log(x)u = \log{\left(x \right)}.

        Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

        ue2udu\int u e^{2 u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=e2u\operatorname{dv}{\left(u \right)} = e^{2 u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. Let u=2uu = 2 u.

            Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

            eu2du\int \frac{e^{u}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2u2\frac{e^{2 u}}{2}

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          e2u2du=e2udu2\int \frac{e^{2 u}}{2}\, du = \frac{\int e^{2 u}\, du}{2}

          1. Let u=2uu = 2 u.

            Then let du=2dudu = 2 du and substitute du2\frac{du}{2}:

            eu2du\int \frac{e^{u}}{2}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              False\text{False}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu2\frac{e^{u}}{2}

            Now substitute uu back in:

            e2u2\frac{e^{2 u}}{2}

          So, the result is: e2u4\frac{e^{2 u}}{4}

        Now substitute uu back in:

        x2log(x)2x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{x^{2}}{4}

      Method #2

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x\operatorname{dv}{\left(x \right)} = x.

        Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

        To find v(x)v{\left(x \right)}:

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        x2dx=xdx2\int \frac{x}{2}\, dx = \frac{\int x\, dx}{2}

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: x24\frac{x^{2}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: x2log(x)23x24\frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4}

  2. Now simplify:

    x2(2log(x)3)4\frac{x^{2} \left(2 \log{\left(x \right)} - 3\right)}{4}

  3. Add the constant of integration:

    x2(2log(x)3)4+constant\frac{x^{2} \left(2 \log{\left(x \right)} - 3\right)}{4}+ \mathrm{constant}


The answer is:

x2(2log(x)3)4+constant\frac{x^{2} \left(2 \log{\left(x \right)} - 3\right)}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                           2    2       
 |                         3*x    x *log(x)
 | (x*log(x) - x) dx = C - ---- + ---------
 |                          4         2    
/                                          
(xlog(x)x)dx=C+x2log(x)23x24\int \left(x \log{\left(x \right)} - x\right)\, dx = C + \frac{x^{2} \log{\left(x \right)}}{2} - \frac{3 x^{2}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
-3/4
34- \frac{3}{4}
=
=
-3/4
34- \frac{3}{4}
-3/4
Numerical answer [src]
-0.75
-0.75
The graph
Integral of xlnx-x dx

    Use the examples entering the upper and lower limits of integration.