Mister Exam

Other calculators

Integral of 1/x(xln(x)-x+c) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |  x*log(x) - x + c   
 |  ---------------- dx
 |         x           
 |                     
/                      
0                      
01c+(xlog(x)x)xdx\int\limits_{0}^{1} \frac{c + \left(x \log{\left(x \right)} - x\right)}{x}\, dx
Integral((x*log(x) - x + c)/x, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = \frac{1}{x}.

      Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

      (cu+log(1u)1u2)du\int \left(- \frac{c u + \log{\left(\frac{1}{u} \right)} - 1}{u^{2}}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        uc+log(1u)1u2du=uc+log(1u)1u2du\int \frac{u c + \log{\left(\frac{1}{u} \right)} - 1}{u^{2}}\, du = - \int \frac{u c + \log{\left(\frac{1}{u} \right)} - 1}{u^{2}}\, du

        1. Let u=log(1u)u = \log{\left(\frac{1}{u} \right)}.

          Then let du=duudu = - \frac{du}{u} and substitute dudu:

          (cueu+eu)du\int \left(- c - u e^{u} + e^{u}\right)\, du

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              (ueu)du=ueudu\int \left(- u e^{u}\right)\, du = - \int u e^{u}\, du

              1. Use integration by parts:

                udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

                Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

                Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

                To find v(u)v{\left(u \right)}:

                1. The integral of the exponential function is itself.

                  eudu=eu\int e^{u}\, du = e^{u}

                Now evaluate the sub-integral.

              2. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: ueu+eu- u e^{u} + e^{u}

            1. The integral of a constant is the constant times the variable of integration:

              (c)du=uc\int \left(- c\right)\, du = - u c

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            The result is: ucueu+2eu- u c - u e^{u} + 2 e^{u}

          Now substitute uu back in:

          clog(1u)log(1u)u+2u- c \log{\left(\frac{1}{u} \right)} - \frac{\log{\left(\frac{1}{u} \right)}}{u} + \frac{2}{u}

        So, the result is: clog(1u)+log(1u)u2uc \log{\left(\frac{1}{u} \right)} + \frac{\log{\left(\frac{1}{u} \right)}}{u} - \frac{2}{u}

      Now substitute uu back in:

      clog(x)+xlog(x)2xc \log{\left(x \right)} + x \log{\left(x \right)} - 2 x

    Method #2

    1. Rewrite the integrand:

      c+(xlog(x)x)x=cx+log(x)1\frac{c + \left(x \log{\left(x \right)} - x\right)}{x} = \frac{c}{x} + \log{\left(x \right)} - 1

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        cxdx=c1xdx\int \frac{c}{x}\, dx = c \int \frac{1}{x}\, dx

        1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

        So, the result is: clog(x)c \log{\left(x \right)}

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

        Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

        To find v(x)v{\left(x \right)}:

        1. The integral of a constant is the constant times the variable of integration:

          1dx=x\int 1\, dx = x

        Now evaluate the sub-integral.

      2. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      1. The integral of a constant is the constant times the variable of integration:

        (1)dx=x\int \left(-1\right)\, dx = - x

      The result is: clog(x)+xlog(x)2xc \log{\left(x \right)} + x \log{\left(x \right)} - 2 x

  2. Add the constant of integration:

    clog(x)+xlog(x)2x+constantc \log{\left(x \right)} + x \log{\left(x \right)} - 2 x+ \mathrm{constant}


The answer is:

clog(x)+xlog(x)2x+constantc \log{\left(x \right)} + x \log{\left(x \right)} - 2 x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                   
 |                                                    
 | x*log(x) - x + c                                   
 | ---------------- dx = C - 2*x + c*log(x) + x*log(x)
 |        x                                           
 |                                                    
/                                                     
c+(xlog(x)x)xdx=C+clog(x)+xlog(x)2x\int \frac{c + \left(x \log{\left(x \right)} - x\right)}{x}\, dx = C + c \log{\left(x \right)} + x \log{\left(x \right)} - 2 x
The answer [src]
-2 + oo*sign(c)
sign(c)2\infty \operatorname{sign}{\left(c \right)} - 2
=
=
-2 + oo*sign(c)
sign(c)2\infty \operatorname{sign}{\left(c \right)} - 2
-2 + oo*sign(c)

    Use the examples entering the upper and lower limits of integration.